These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dendritic voltage and calcium-gated channels amplify the variability of postsynaptic responses in a Purkinje cell model.
    Author: De Schutter E.
    Journal: J Neurophysiol; 1998 Aug; 80(2):504-19. PubMed ID: 9705446.
    Abstract:
    The dendrites of most neurons express several types of voltage and Ca2+-gated channels. These ionic channels can be activated by subthreshold synaptic input, but the functional role of such activations in vivo is unclear. The interaction between dendritic channels and synaptic background input as it occurs in vivo was studied in a realistic computer model of a cerebellar Purkinje cell. It previously was shown using this model that dendritic Ca2+ channels amplify the somatic response to synchronous excitatory inputs. In this study, it is shown that dendritic ion channels also increased the somatic membrane potential fluctuations generated by the background input. This amplification caused a highly variable somatic excitatory postsynaptic potential (EPSP) in response to a synchronous excitatory input. The variability scaled with the size of the response in the model with excitable dendrite, resulting in an almost constant coefficient of variation, whereas in a passive model the membrane potential fluctuations simply added onto the EPSP. Although the EPSP amplitude in the active dendrite model was quite variable for different patterns of background input, it was insensitive to changes in the timing of the synchronous input by a few milliseconds. This effect was explained by slow changes in dendritic excitability. This excitability was determined by how the background input affected the dendritic membrane potentials in the preceding 10-20 ms, causing changes in activation of voltage and Ca2+-gated channels. The most important model variables determining the excitability at the time of a synchronous input were the Ca2+-activation of K+ channels and the inhibitory synaptic conductance, although many other model variables could be influential for particular background patterns. Experimental evidence for the amplification of postsynaptic variability by active dendrites is discussed. The amplification of the variability of EPSPs has important functional consequences in general and for cerebellar Purkinje cells specifically. Subthreshold, background input has a much larger effect on the responses to coherent input of neurons with active dendrites compared with passive dendrites because it can change the effective threshold for firing. This gives neurons with dendritic calcium channels an increased information processing capacity and provides the Purkinje cell with a gating function.
    [Abstract] [Full Text] [Related] [New Search]