These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Generation of a strong mutator phenotype in yeast by imbalanced base excision repair. Author: Glassner BJ, Rasmussen LJ, Najarian MT, Posnick LM, Samson LD. Journal: Proc Natl Acad Sci U S A; 1998 Aug 18; 95(17):9997-10002. PubMed ID: 9707589. Abstract: Increased spontaneous mutation is associated with increased cancer risk. Here, by using a model system, we show that spontaneous mutation can be increased several hundred-fold by a simple imbalance between the first two enzymes involved in DNA base excision repair. The Saccharomyces cerevisiae MAG1 3-methyladenine (3MeA) DNA glycosylase, when expressed at high levels relative to the apurinic/apyrimidinic endonuclease, increases spontaneous mutation by up to approximately 600-fold in S. cerevisiae and approximately 200-fold in Escherichia coli. Genetic evidence suggests that, in yeast, the increased spontaneous mutation requires the generation of abasic sites and the processing of these sites by the REV1/REV3/REV7 lesion bypass pathway. Comparison of the mutator activity produced by Mag1, which has a broad substrate range, with that produced by the E. coli Tag 3MeA DNA glycosylase, which has a narrow substrate range, indicates that the removal of endogenously produced 3MeA is unlikely to be responsible for the mutator effect of Mag1. Finally, the human AAG 3-MeA DNA glycosylase also can produce a small (approximately 2-fold) but statistically significant increase in spontaneous mutation, a result which could have important implications for carcinogenesis.[Abstract] [Full Text] [Related] [New Search]