These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dissociation of bone formation from resorption during 2-week treatment with human parathyroid hormone-related peptide-(1-36) in humans: potential as an anabolic therapy for osteoporosis.
    Author: Plotkin H, Gundberg C, Mitnick M, Stewart AF.
    Journal: J Clin Endocrinol Metab; 1998 Aug; 83(8):2786-91. PubMed ID: 9709948.
    Abstract:
    PTH administration increases bone mass in rodents and in humans. PTH-related protein (PTHrP) binds to and signals via the skeletal PTH receptor. Administration of PTHrP on a once daily basis increases bone mineral content in rats. In humans, PTHrP-(1-36) is equipotent to PTH-(1-34) and is active when administered s.c. These findings suggest that PTHrP might have therapeutic benefit in the treatment of osteoporosis. In this study, 13 postmenopausal estrogen-deficient women received a single daily s.c. dose of PTHrP-(1-36) for a 14-day period to determine whether PTHrP-(1-36) 1) could be given in doses that do not alter systemic mineral homeostasis, but increase markers of bone turnover; and 2) is tolerated without adverse effects. Daily s.c. PTHrP-(1-36) administration caused no significant changes in serum calcium or phosphorus concentrations, fractional calcium excretion, the tubular maximum for phosphorus, fractional calcium excretion, or plasma 1,25-dihydroxyvitamin D concentrations. Nephrogenous cAMP and endogenous PTH-(1-84) declined. Importantly, markers of bone formation trended upward, as reported in subjects treated with PTH. In marked contrast to findings in PTH-treated subjects, in PTHrP-treated subjects, markers of bone resorption declined in a highly significant fashion. These observations indicate that PTHrP-(1-36) treatment uncouples bone formation from resorption, in favor of formation. This uncoupling, if it were to continue over the longer term, would predict that PTHrP-(1-36) might be a potent anabolic therapeutic agent for osteoporosis.
    [Abstract] [Full Text] [Related] [New Search]