These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Physiological effects of solar heat load in a fighter cockpit.
    Author: Nunneley SA, Myhre LG.
    Journal: Aviat Space Environ Med; 1976 Sep; 47(9):969-73. PubMed ID: 971177.
    Abstract:
    The use of bubble canopies to improve vision in fighter aircraft exposes the cockpit to a high radiant heat load. Incoming sunlight increases the heat stress on crewmembers, both by raising air temperature and by directly heating exposed skin and clothing. An F-15 aircraft at Edwards AFB was modified to permit cockpit ventilation by external ground carts. Eight volunteers from the Test Pilot School were studied during 1-h periods in the closed cockpit, in sun and in shade. Mean cockpit air temperatures were 35.2 degrees C in shade and 51.9 degrees C in sun with PH2O less than 10 torr. The corresponding WBGT's were 22.6 and 36.4 degrees C. Sunlight added significantly to overall heat stress, as indicated by a rising heart rate and evaporative weight loss of 284 g/m2 - h (shade value was 109 g/m2 - hr). Mean skin temperatures were 34.3 degrees C in shade and 35.8 degrees C in sun. Particularly high skin temperatures were observed on the chest, the forehead and the top of the head under the helmet. The legs remained cool due to the flow of conditioned air, and this may explain why rectal temperature showed no meaningful change. Heat stress, which alone poses no physiological hazard, may cause crew performance decrements as well as diminishing acceleration tolerance. Possible means of eliminating or ameliorating these effects are discussed.
    [Abstract] [Full Text] [Related] [New Search]