These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Iron mobilisation and cellular protection by a new synthetic chelator O-Trensox. Author: Rakba N, Aouad F, Henry C, Caris C, Morel I, Baret P, Pierre JL, Brissot P, Ward RJ, Lescoat G, Crichton RR. Journal: Biochem Pharmacol; 1998 Jun 01; 55(11):1797-806. PubMed ID: 9714298. Abstract: We tested a new synthetic, 8-hydroxyquinoline-based, hexadentate iron chelator, O-Trensox and compared it with desferrioxamine B (DFO). Iron mobilisation was evaluated: (i) in vitro by using ferritin and haemosiderin; DFO mobilised iron much more rapidly from ferritin at pH 7.4 than did O-Trensox, whereas at pH 4, ferritin and haemosiderin iron mobilisation was very similar with both chelators; (ii) in vitro by using cultured rat hepatocytes which had been loaded with 55Fe-ferritin; here DFO was slightly more effective after 100 hr than O-Trensox; (iii) in vivo administration i.p. to rats which had been iron-loaded with iron dextran; O-Trensox mobilised 51.5% of hepatic iron over two weeks compared to 48.8% for DFO. We also demonstrated the effect of O-Trensox in decreasing the entry of 55Fe citrate into hepatocyte cultures. The protective effect of O-Trensox against iron toxicity induced in hepatocyte cultures by ferric citrate was shown by decreased release of the enzymes lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and alanine aminotranferase (ALT) from the cultures and, using electron paramagnetic resonance (EPR) measurements, decreased production of lipid radicals. O-Trensox was more effective than DFO in quenching hydroxyl radicals in an acellular system.[Abstract] [Full Text] [Related] [New Search]