These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characteristics of two slow inactivation mechanisms and their influence on the sodium channel activity of frog ventricular myocytes.
    Author: Furue T, Yakehiro M, Yamaoka K, Sumii K, Seyama I.
    Journal: Pflugers Arch; 1998 Oct; 436(5):631-8. PubMed ID: 9716693.
    Abstract:
    Inactivation of the fast Na+ current of heart muscle occurs in two kinetically distinct phases: a fast process operating on a millisecond time scale and a considerably slower process, the kinetic properties of which have not been explored fully. In this study, we analysed the slow inactivation process in isolated frog ventricular myocytes using the whole-cell variation of the patch-clamp method. Slow inactivation of the Na+ current followed a double-exponential time course, corresponding to slow and ultraslow components of Na+ channel inactivation. The individual time constants were 2-7 s (slow component) and 40-560 s (ultraslow component). Recovery from these slow inactivation processes also followed a double-exponential time course, but was characterized by significantly briefer time constants than those for the inactivation process. The relationship between transmembrane potential and steady-state slow or ultraslow inactivation was well described by the Boltzmann equation. The membrane potential at which half the Na+ channels are inactivated (V1/2) and the slope factor were estimated to be -48.1 and 13.6 mV, respectively, for the slow component alone. Under conditions in which the slow and ultraslow inactivation components were both present, these parameters were -53.1 and 8.7 mV respectively. When the fast and the two slow inactivation processes occurred concomitantly, the resultant steady-state inactivation curves were shifted to more negative potentials and the slope factor was decreased. Treatment with 1 mM Cd2+ externally did not affect the time course of slow inactivation, but produced a 3-7 mV depolarizing shift in its steady-state voltage dependency by virtue of cadmium's known effect on the cell surface potential. This study has thus identified two components of slow Na+ inactivation in heart muscle, operating on a time scale of seconds (slow inactivation) and minutes (ultraslow inactivation).
    [Abstract] [Full Text] [Related] [New Search]