These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Calreticulin inhibits vitamin D's action on the PTH gene in vitro and may prevent vitamin D's effect in vivo in hypocalcemic rats. Author: Sela-Brown A, Russell J, Koszewski NJ, Michalak M, Naveh-Many T, Silver J. Journal: Mol Endocrinol; 1998 Aug; 12(8):1193-200. PubMed ID: 9717845. Abstract: 1,25-dihydroxyvitaminD3 [1,25-(OH)2D3] and PTH both act to increase serum calcium. In addition, 1,25-(OH)2D3 decreases PTH gene transcription, which is relevant both to the physiology of calcium homeostasis and to the management of the secondary hyperparathyroidism of patients with chronic renal failure. In chronic hypocalcemia there is secondary hyperparathyroidism with increased levels of PTH mRNA and serum PTH despite markedly increased levels of 1,25-(OH)2D3. We have studied the role of calreticulin in this resistance to 1,25-(OH)2D3. Weanling rats fed a low-calcium diet were hypocalcemic and had increased PTH mRNA levels despite high serum 1,25-(OH)2D3 levels. 1,25-(OH)2D3 given by continuous minipump infusion to normal rats led to the expected decrease in PTH mRNA. The hypocalcemic rats had an increased concentration of calreticulin in the nuclear fraction of their parathyroids, but not in other tissues. Gel shift assays showed that a purified vitamin D receptor and retinoid X receptor-beta bound to the PTH promoter's chicken and rat vitamin D response element (VDRE), and this binding was inhibited by added pure calreticulin. Transfection studies with a PTH VDRE-chloramphenicol acetyltransferase (CAT) construct showed that 1,25-(OH)2D3 decreased CAT transcription. Cotransfection of PTH VDRE-CAT with a calreticulin expression vector in the sense orientation prevented the transcriptional effect of 1,25-(OH)2D3, but a calreticulin vector in the antisense orientation had no effect. These results show that calreticulin prevents the binding of vitamin D receptor-retinoid X receptor-beta to the PTH VDRE in gel retardation assays and prevents the transcriptional effect of 1,25-(OH)2D3 on the PTH gene. This is the first report of calreticulin inhibiting a down-regulatory function of a sterol hormone and may help explain the refractoriness of the secondary hyperparathyroidism of many chronic renal failure patients to 1,25-(OH)2D3.[Abstract] [Full Text] [Related] [New Search]