These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Oxidative stress activates the human histidine decarboxylase promoter in AGS gastric cancer cells. Author: Höcker M, Rosenberg I, Xavier R, Henihan RJ, Wiedenmann B, Rosewicz S, Podolsky DK, Wang TC. Journal: J Biol Chem; 1998 Sep 04; 273(36):23046-54. PubMed ID: 9722530. Abstract: Oxidant stress is thought to play a role in the pathogenesis of many gastric disorders. We have recently reported that histidine decarboxylase (HDC) promoter activity is stimulated by gastrin through a protein kinase C- and extracellular signal-regulating kinase (ERK)-dependent pathway in gastric cancer (AGS-B) cells, and this transcriptional response is mediated by a downstream cis-acting element, the gastrin response element (GAS-RE). To study the mechanism through which oxidant stress affects gastric cells, we examined the effects of hydrogen peroxide (H2O2) on HDC promoter activity and intracellular signaling in AGS-B cells. H2O2 (10 mM) specifically activated the HDC promoter 10-12-fold, and this activation was blocked by both mannitol and N-acetylcysteine. Hydrogen peroxide treatment of AGS-B cells increased the phosphorylation and kinase activity of ERK-1 and ERK-2, but did not affect Jun kinase tyrosine phosphorylation or kinase activity. In addition, treatment of AGS-B cells with H2O2 resulted in increased c-fos/c-jun mRNA expression and AP-1 activity, and also led to increased phosphorylation of epidermal growth factor receptor (EGFR) and Shc. H2O2-dependent stimulation of HDC promoter activity was completely inhibited by kinase-deficient ERKs, dominant-negative (N17 and N15) Ras, and dominant-negative Raf, and partially blocked by a dominant-negative EGFR mutant. In contrast, protein kinase C blockade did not inhibit H2O2-dependent induction of the HDC promoter. Finally, deletion analysis demonstrated that the H2O2 response element could be mapped to the GAS-RE (nucleotides 2 to 24) of the basal HDC promoter. Overall, these studies suggest that oxidant stress activates the HDC promoter through the GAS-RE, and through an Ras-, Raf-, and ERK-dependent pathway at least partially involving the EGFR.[Abstract] [Full Text] [Related] [New Search]