These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phosphoinositide 3-kinase regulates phospholipase Cgamma-mediated calcium signaling. Author: Rameh LE, Rhee SG, Spokes K, Kazlauskas A, Cantley LC, Cantley LG. Journal: J Biol Chem; 1998 Sep 11; 273(37):23750-7. PubMed ID: 9726983. Abstract: It has been demonstrated that the lipid products of the phosphoinositide 3-kinase (PI3K) can associate with the Src homology 2 (SH2) domains of specific signaling molecules and modify their actions. In the current experiments, phosphatidylinositol 3,4, 5-trisphosphate (PtdIns-3,4,5-P3) was found to bind to the C-terminal SH2 domain of phospholipase Cgamma (PLCgamma) with an apparent Kd of 2.4 microM and to displace the C-terminal SH2 domain from the activated platelet-derived growth factor receptor (PDGFR). To investigate the in vivo relevance of this observation, intracellular inositol trisphosphate (IP3) generation and calcium release were examined in HepG2 cells expressing a series of PDGFR mutants that activate PLCgamma with or without receptor association with PI3K. Coactivation of PLCgamma and PI3K resulted in an approximately 40% increase in both intracellular IP3 generation and intracellular calcium release as compared with selective activation of PLCgamma. Similarly, the addition of wortmannin or LY294002 to cells expressing the wild-type PDGFR inhibited the release of intracellular calcium. Thus, generation of PtdIns-3,4,5-P3 by receptor-associated PI3K causes an increase in IP3 production and intracellular calcium release, potentially via enhanced PtdIns-4, 5-P2 substrate availability due to PtdIns-3,4,5-P3-mediated recruitment of PLCgamma to the lipid bilayer.[Abstract] [Full Text] [Related] [New Search]