These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The domain structure of human receptor-associated protein. Protease sensitivity and guanidine HCl denaturation.
    Author: Rall SC, Ye P, Bu G, Wardell MR.
    Journal: J Biol Chem; 1998 Sep 11; 273(37):24152-7. PubMed ID: 9727037.
    Abstract:
    The 39-kDa receptor-associated protein (RAP), a specialized chaperone for endocytic receptors of the low density lipoprotein receptor gene family, is a triplicate repeat sequence (residues 1-100, 101-200, and 201-323, respectively), with the three repeats having different functional roles. The goal of the present study was to use a combination of protease sensitivity and guanidine denaturation analyses to investigate whether human RAP correspondingly contained multiple structural domains. Protease sensitivity analysis using six proteolytic enzymes of varying specificity showed that RAP has two protease-resistant regions contained within repeat 1 (residues 15-94) and repeat 3 (residues 223-323). Guanidine denaturation analysis showed that RAP has two phases in its denaturation, an early denaturation transition at 0.6 M guanidine HCl, and a broad second transition between 1.0 and 3.0 M guanidine HCl. Analysis of the denaturation of the individual repeats showed that, despite the similarity in sequence and protease sensitivity between repeats 1 and 3, repeat 1 was a stable structure, with a sharp transition midpoint at 2.4 M guanidine HCl, while repeat 3 was relatively unstable, with a transition midpoint at 0.6 M guanidine HCl. Repeat 2 had a denaturation profile almost identical to that of repeat 3. Denaturation analysis of the contiguous repeats 1 and 2 (residues 1-210) indicated that repeats 1 and 2 probably interact to form one structural domain represented by the broad transition, while repeat 3 constitutes a separate domain represented by the early transition. A two-domain model of RAP three-dimensional structure is proposed that integrates both structural and functional information, in which a helical segment from repeat 2 interacts with the known three-helix bundle of repeat 1 to form a four-helix bundle structural domain, while repeat 3 forms the other structural domain.
    [Abstract] [Full Text] [Related] [New Search]