These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bone marrow repopulation by human marrow stem cells after long-term expansion culture on a porcine endothelial cell line. Author: Brandt JE, Galy AH, Luens KM, Travis M, Young J, Tong J, Chen S, Davis TA, Lee KP, Chen BP, Tushinski R, Hoffman R. Journal: Exp Hematol; 1998 Sep; 26(10):950-61. PubMed ID: 9728930. Abstract: In vitro exposure of murine hematopoietic stem cells (HSCs) to cell cycle-inducing cytokines has been shown to result in a defect in the ability of these cells to engraft. We used a porcine microvascular endothelial cell (PMVEC) line in conjunction with exogenous interleukin (IL)-3, IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), and stem cell factor (SCF) to expand human HSCs that express the CD34 and Thy-1 antigens but lack lineage-associated markers (CD34+Thy-1+Lin- cells). Ex vivo expansion of hematopoietic cells was evaluated in comparison to stromal cell-free, cytokine-supplemented cultures. Cells expressing the CD34+Thy-1+Lin- phenotype were detectable in both culture systems for up to 3 weeks. These cells were reisolated from the cultures and their ability to engraft human fetal bones implanted into SCID mice (SCID-hu bone) was tested. HSCs expanded in PMVEC coculture were consistently capable of competitive marrow repopulation with multilineage (CD19+ B lymphoid, CD33+ myeloid, and CD34+ cells) progeny present 8 weeks postengraftment. In contrast, grafts composed of cells expanded in stroma-free cultures did not lead to multilineage SCID-hu bone repopulation. Proliferation analysis revealed that by 1 week of culture more than 80% of the cells in the PMVEC cocultures expressing the primitive CD34+CD38- phenotype had undergone cell division. Fewer than 1% of the cells that proliferated in the absence of stromal cells remained CD34+CD38-. These data suggest that the proliferation of HSCs in the presence of IL-3, IL-6, GM-CSF, and SCF without stromal cell support may result in impairment of engraftment capacity, which may be overcome by coculture with PMVECs.[Abstract] [Full Text] [Related] [New Search]