These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Anosmin-1 underlying the X chromosome-linked Kallmann syndrome is an adhesion molecule that can modulate neurite growth in a cell-type specific manner. Author: Soussi-Yanicostas N, Faivre-Sarrailh C, Hardelin JP, Levilliers J, Rougon G, Petit C. Journal: J Cell Sci; 1998 Oct; 111 ( Pt 19)():2953-65. PubMed ID: 9730987. Abstract: Anosmin-1 is an extracellular matrix glycoprotein which underlies the X chromosome-linked form of Kallmann syndrome. This disease is characterized by hypogonadism due to GnRH deficiency, and a defective sense of smell related to the underdevelopment of the olfactory bulbs. This study reports that anosmin-1 is an adhesion molecule for a variety of neuronal and non-neuronal cell types in vitro. We show that cell adhesion to anosmin-1 is dependent on the presence of heparan sulfate and chondroitin sulfate glycosaminoglycans at the cell surface. A major cell adhesion site of anosmin-1 was identified in a 32 amino acid (32R1) sequence located within the first fibronectin-like type III repeat of the protein. The role of anosmin-1 as a substrate for neurite growth was tested on either coated culture dishes or monolayers of anosmin-1-producing CHO cells. In both experimental systems, anosmin-1 was shown to be a permissive substrate for the neurite growth of different types of neurons. Mouse P5 cerebellar neurons cultured on anosmin-1 coated wells developed long neurites; the 32R1 peptide was found to underly part of this neurite growth activity. When the cerebellar neurons were cultured on anosmin-1-producing CHO cells, neurite growth was reduced as compared to wild-type CHO cells; in contrast, no difference was observed for E18 hippocampal and P1 dorsal root ganglion neurons in the same experimental system. These results indicate that anosmin-1 can modulate neurite growth in a cell-type specific manner. Finally, anosmin-1 induced neurite fasciculation of P5 cerebellar neuron aggregates cultured on anosmin-1-producing CHO cells. The pathogenesis of the olfactory defect in the X-linked Kallmann syndrome is discussed in the light of the present results and the recent data reporting the immunohistochemical localisation of anosmin-1 during early embryonic development.[Abstract] [Full Text] [Related] [New Search]