These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lysis of plasma clots by urokinase-soluble urokinase receptor complexes.
    Author: Higazi AA, Bdeir K, Hiss E, Arad S, Kuo A, Barghouti I, Cines DB.
    Journal: Blood; 1998 Sep 15; 92(6):2075-83. PubMed ID: 9731065.
    Abstract:
    Single-chain urokinase plasminogen activator (scuPA), the unique form secreted by cells, expresses little intrinsic plasminogen activator activity. scuPA can be activated by proteolytic cleavage to form a two-chain enzyme (tcuPA), which is susceptible to inhibition by plasminogen activator inhibitor type I (PAI-1). scuPA is also activated when it binds to its cellular receptor (uPAR), in which case the protein remains as a single chain molecule with less susceptibility to PAIs. Fibrin clots are invested with PAI-1 derived from plasma and from activated platelets. Therefore, we compared the fibrinolytic activity of complexes between scuPA and recombinant soluble uPAR (suPAR) to that of scuPA, tcuPA, and tcuPA/suPAR complexes. scuPA/suPAR complexes mediated the lysis of plasma-derived fibrin clots 14-fold more extensively than did equimolar concentrations of scuPA and threefold more extensively than did tcuPA or tcuPA/suPAR, respectively. The enhanced catalytic activity of scuPA/suPAR required that all three domains of the receptor be present, correlated with its PAI-1 resistance, was not dependent on fibrin alone, and required a plasma cofactor that was identified as IgG. Human IgG bound specifically to suPAR and scuPA/suPAR as determined by using affinity chromatography and immunoprecipitation. Plasma depleted of IgG lost most of its capacity to promote the fibrinolytic activity of scuPA/suPAR, and the activity of the complex was restored by adding plasma concentrations of purified IgG. These studies indicate that scuPA/suPAR can function as a plasminogen activator in a physiological milieu.
    [Abstract] [Full Text] [Related] [New Search]