These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Human cytochrome P450-catalyzed conversion of the proestrogenic pesticide methoxychlor into an estrogen. Role of CYP2C19 and CYP1A2 in O-demethylation.
    Author: Stresser DM, Kupfer D.
    Journal: Drug Metab Dispos; 1998 Sep; 26(9):868-74. PubMed ID: 9733665.
    Abstract:
    1,1,1-Trichloro-2,2-bis(4-methoxyphenyl)ethane (methoxychlor) is a widely used pesticide that is pro-estrogenic. We have elucidated the human cytochrome P450 enzymes responsible for conversion of methoxychlor into its major metabolite, the mono-O-demethylated derivative (mono-OH-M) that is estrogenic. Incubation of methoxychlor with microsomes from insect cells overexpressing either CYP1A2, CYP2C18, or CYP2C19 yielded mono-OH-M with turnover numbers of 14.9, 15.5, and 39.1 nmol/min/nmol of P450, respectively. CYP2B6 and CYP2C9 were much less active. Incubations with purified CYP2C19 and CYP2C18 resulted in formation of mono-OH-M, and also the bis-demethylated metabolite. Co-incubation of liver microsomes with methoxychlor and various P450 isoform-selective inhibitors suggested involvement of several P450s in mono-O-demethylation, including CYP1A2, CYP2A6, CYP2C9, and CYP2C19. A role for CYP2C19, CYP1A2, and CYP2A6 was also indicated by multivariate regression analysis of the mono-O-demethylase activity in a panel of human liver microsomes characterized for isoform-specific catalytic activities (R2 = 0.96). Based on the totality of the evidence, CYP2C19 appears to be the major catalyst of methoxychlor mono-O-demethylation. However, in individuals lacking functional CYP2C19 (e.g. the "poor metabolizer" phenotype), CYP1A2 may play the predominant role. CYP2A6, CYP2C9, and CYP2B6 probably contribute to a lesser extent. Although CYP2C18 is an efficient methoxychlor demethylase, its expression in liver is reportedly low or absent, suggesting a negligible role for this enzyme in methoxychlor metabolism. Lengthy incubations of liver microsomes with methoxychlor produced other secondary and tertiary metabolites. Efficient conversion of methoxychlor to estrogenic mono-OH-M by liver microsomes suggests that methoxychlor has the potential to be estrogenic in humans, as observed in several animal species.
    [Abstract] [Full Text] [Related] [New Search]