These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A K cation-induced conformational switch within a loop spanning segment of a DNA quadruplex containing G-G-G-C repeats.
    Author: Bouaziz S, Kettani A, Patel DJ.
    Journal: J Mol Biol; 1998 Sep 25; 282(3):637-52. PubMed ID: 9737927.
    Abstract:
    We have identified a unique structural transition (in slow exchange on the NMR time scale) in the tertiary fold of the d(G-G-G-C-T4-G-G-G-C) quadruplex on proceeding from Na+ to K+ as counterion in aqueous solution. Both monovalent cation-dependent conformations exhibit certain common structural features, which include head-to-tail dimerization of two symmetry-related stem-hairpin loops, adjacent strands which are antiparallel to each other and adjacent stacked G(syn).G(anti). G(syn).G(anti) tetrads in the central core of the quadruplexes. The Na and K cation stabilized structures of the d(G-G-G-C-T4-G-G-G-C) quadruplexes differ in the conformations of the T-T-T-T loops, the relative alignment of G.C base-pairs positioned opposite each other through their major groove edges and potentially in the number of monovalent cation binding sites. We have identified potential K cation binding cavities within the symmetry-related T-T-T-G segments, suggesting the potential for two additional monovalent cation binding sites in the K cation-stabilized quadruplex relative to its Na cation-stabilized counterpart. Modeling studies suggest that the major groove edges of guanine residues in Watson-Crick G.C base-pairs could potentially be bridged by coordinated K cations in the d(G-G-G-C-T4-G-G-G-C) quadruplex in KCl solution in contrast to formation of G.C.G.C tetrads for the corresponding quadruplex in NaCl solution. Our results defining the molecular basis of a Na to K cation-dependent conformational switch in the loop spanning segment of the d(G-G-G-C-T4-G-G-G-C) quadruplex may have relevance to recent observations that specific K cation coordinated loop conformations within quadruplexes exhibit inhibitory activity against HIV integrase.
    [Abstract] [Full Text] [Related] [New Search]