These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chloride concentration in cultured hippocampal neurons increases during long-term exposure to ammonia through enhanced expression of an anion exchanger. Author: Irie T, Hara M, Yasukura T, Minamino M, Omori K, Matsuda H, Inoue K, Inagaki C. Journal: Brain Res; 1998 Sep 28; 806(2):246-56. PubMed ID: 9739146. Abstract: The effects of long-term exposure to ammonia on [Cl-]i in cultured hippocampal neurons were examined. Ammonia increased the [Cl-]i time- (>/=24 h) and concentration- (>/=2 mM) dependently, resulting in a depolarizing shift of the equilibrium potential of the GABAA receptor-Cl- channel opening (EGABA). Such an effect of ammonia was diminished by the inhibitors of Cl-/HCO3- exchangers, 0.1 mM 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS) and 0.1 mM 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), and a carbonic anhydrase inhibitor, 2 mM acetazolamide, but not by a Na+/K+/2Cl-cotransport inhibitor, 50 microM bumetanide, suggesting an enhanced Cl-/HCO3- exchange activity by ammonia. The ammonia-induced increase in [Cl-]i was also abolished by the inhibitors of protein kinase C (PKC), 0.1 microM calphostin C and 10 microM 1-(5-isoquinolinyl-sulfonyl)-2-methylpiperazine dihydrochloride (H-7), and of transcription and de novo protein synthesis, 1 microM actinomycin D and 0.5 microg/ml cycloheximide, while a PKC activator, 0.1 h microM phorbor 12-myristate 13-acetate (PMA), increased the [Cl-]i. The mRNA level of the AE3 Cl-/HCO3- exchanger was increased by ammonia in a calphostin C- and H-7-sensitive manner. The AE3-like immunoreactivity was also increased by ammonia. These findings suggest that long-term exposure to ammonia increases the expression of AE3 through the activation of PKC, resulting in an increase in [Cl-]i in neurons and a reduction of inhibitory postsynaptic potentials.[Abstract] [Full Text] [Related] [New Search]