These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The influence of target protein half-life on the effectiveness of antisense oligonucleotide analog-mediated biologic responses.
    Author: Spiller DG, Giles RV, Broughton CM, Grzybowski J, Ruddell CJ, Tidd DM, Clark RE.
    Journal: Antisense Nucleic Acid Drug Dev; 1998 Aug; 8(4):281-93. PubMed ID: 9743466.
    Abstract:
    During the course of a study aimed at improving antisense oligodeoxynucleotide-mediated ex vivo bone marrow purging of patients suffering from chronic myeloid leukemia (CML), the properties of a number of antisense structures intended to reduce the expression of c-myc, mutant p53, and bcr-abl mRNAs and proteins were examined. The majority of the antisense oligodeoxynucleotides were designed to be capable of directing ribonuclease H (RNase H) cleavage of their target mRNAs. Streptolysin O (SLO) reversible permeabilization was used to deliver the oligodeoxynucleotides into the CML line KYO-1. We found that the efficiency and specificity of antisense oligonucleotide-induced reductions of target protein expression depended on target protein half-life, the oligonucleotide structure, and the specific sequence within the target mRNA. Transient reductions of c-myc mRNA and protein were achieved with a chimeric methylphosphonate-phosphodiester oligodeoxynucleotide antisense to the initiation codon, but cell proliferation was unaffected. In contrast, a chimeric oligodeoxynucleotide of similar structure targeted to an alternative site in the coding region of c-myc mRNA reduced target mRNA and protein levels for over 24 hours and halted cell proliferation. Chimeric methylphosphonate-phosphodiester oligodeoxynucleotide antisense to a point mutation in KYO-1 p53 mRNA efficiently reduced target mRNA expression, but only small, transient reductions in p53 protein expression were observed. However, a chimeric methylphosphonate-phosphorothioate oligodeoxynucleotide targeted to the same site reduced p53 protein to 30% of control levels over a 48-hour period. BCR-ABL protein expression was unaffected by chimeric oligodeoxynucleotides targeted to the breakpoint in bcr-abl mRNA, even when mRNA levels at early times were substantially reduced.
    [Abstract] [Full Text] [Related] [New Search]