These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Functional analyses of a conserved region in glucosyltransferases of Streptococcus mutans.
    Author: Chia JS, Yang CS, Chen JY.
    Journal: Infect Immun; 1998 Oct; 66(10):4797-803. PubMed ID: 9746581.
    Abstract:
    Streptococcus mutans glucosyltransferases (GTFs; GtfB, -C, and -D) synthesize water-soluble and -insoluble glucan polymers from sucrose. We have identified previously a conserved region of 19 amino acids (aa) (Gtf-P1; aa 409 to 427 of GtfB and aa 435 to 453 of GtfC) which is functionally important for both enzymatic activity and bacterial adherence. Monoclonal antibodies directed against Gtf-P1 selectively inhibited insoluble glucan synthesis by GtfB and -C but had no effect on soluble glucan synthesis by GtfD, suggesting that despite an apparent near identity of sequence, corresponding residues may function differently in these enzymes. To test this hypothesis, we used different strategies of mutagenesis to analyze amino acid residues of GtfB and GtfC in Gtf-P1. In-frame insertion of 6 amino acids preceding, or deletion of 14 amino acids within, this conserved region abolished the enzymatic activities of both GtfB and GtfC. Substitution of several residues in combination by random mutagenesis resulted in GtfB, but not GtfC, enzymes exhibiting decreased glucan synthesis and reduced rates of sucrose hydrolysis. Amino acid substitutions of Asp residues in GtfB or GtfC were found to be more critical for enzymatic activity than at other positions of this region. Interestingly, single mutation at Asp411 or Asp413 of GtfB resulted in enzymes retaining about 20% of wild-type activity, whereas mutagenesis of the corresponding Asp at position 437 or 439 in GtfC resulted in complete loss of enzymatic activity. Furthermore, single amino acid substitution of a Val residue between the two Asp residues enhanced the sucrase- and glucan-synthesizing activities of GtfB and GtfC. These results confirmed the report from another laboratory that Asp residues in the Gtf-P1 region are essential for enzymatic catalysis and provide new evidence that identical residues may function differently in closely related Gtf enzymes.
    [Abstract] [Full Text] [Related] [New Search]