These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chemosensitivity of nociceptive, mechanosensitive afferent nerve fibres in the guinea-pig ureter.
    Author: Sann H.
    Journal: Eur J Neurosci; 1998 Apr; 10(4):1300-11. PubMed ID: 9749784.
    Abstract:
    The mechanosensitivity and chemosensitivity of afferent fibres were investigated in an in vitro preparation of the guinea-pig ureter. Electrophysiological recordings were obtained from 5 U-1 (low mechanical threshold, contraction-sensitive) and 74 U-2 units (high threshold). U-2 units had significant higher levels of spontaneous activity, lower conduction velocities, higher mechanical thresholds (U-1: 7 mmHg; U-2: 39 mmHg), less pronounced phasic responses and longer latencies in the response to distensions than the U-1 units. For chemical stimulation, guinea-pig urine (> 800 mosmol/L), bradykinin and capsaicin were applied intraluminally. The responses of U-1 units mainly corresponded to the contractions induced by the chemical stimulation. The vast majority of the U-2 units were excited by urine, bradykinin (threshold: 0.1-1 microM) and capsaicin (threshold: 0.03-0.3 microM). The responses to urine could be mimicked by high concentrations of potassium ions (> 200 mM), but not by an equiosmolar solution of NaCl, urea and mannitol. Chemical stimulation could also result in a transient sensitization of the U-2 units to mechanical stimuli. In the anaesthetized guinea-pig, pseudo-affective responses could be evoked by ureteric distension (threshold: 30-60 mmHg) and serosal application of capsaicin. Intraluminal application of urine in vivo did not evoke any reactions, suggesting that the responses of the U-2 units to urine might be due to an impaired barrier function of the urothelium in vitro. The data are in agreement with the hypothesis that U-2 units are visceral polymodal nociceptors. Since the U-1 units were also able to encode at least noxious mechanical stimuli, their involvement in visceral nociception cannot be excluded.
    [Abstract] [Full Text] [Related] [New Search]