These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Apoptotic proteins Reaper and Grim induce stable inactivation in voltage-gated K+ channels. Author: Avdonin V, Kasuya J, Ciorba MA, Kaplan B, Hoshi T, Iverson L. Journal: Proc Natl Acad Sci U S A; 1998 Sep 29; 95(20):11703-8. PubMed ID: 9751729. Abstract: Drosophila genes reaper, grim, and head-involution-defective (hid) induce apoptosis in several cellular contexts. N-terminal sequences of these proteins are highly conserved and are similar to N-terminal inactivation domains of voltage-gated potassium (K+) channels. Synthetic Reaper and Grim N terminus peptides induced fast inactivation of Shaker-type K+ channels when applied to the cytoplasmic side of the channel that was qualitatively similar to the inactivation produced by other K+ channel inactivation particles. Mutations that reduce the apoptotic activity of Reaper also reduced the synthetic peptide's ability to induce channel inactivation, indicating that K+ channel inactivation correlated with apoptotic activity. Coexpression of Reaper RNA or direct injection of full length Reaper protein caused near irreversible block of the K+ channels. These results suggest that Reaper and Grim may participate in initiating apoptosis by stably blocking K+ channels.[Abstract] [Full Text] [Related] [New Search]