These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Complementary action of antioxidant enzymes in the protection of bioengineered insulin-producing RINm5F cells against the toxicity of reactive oxygen species. Author: Tiedge M, Lortz S, Munday R, Lenzen S. Journal: Diabetes; 1998 Oct; 47(10):1578-85. PubMed ID: 9753295. Abstract: To determine the importance of different antioxidative enzymes for the defense status of insulin-producing cells, the effects of stable overexpression of glutathione peroxidase (Gpx), catalase (Cat), or Cu/Zn superoxide dismutase (SOD) in insulin-producing RINm5F cells on the cytotoxicity of hydrogen peroxide (H2O2), hypoxanthine/xanthine oxidase (H/XO), and menadione have been investigated. Single overexpression of Cat or Gpx provided less protection than the combined expression of Cat plus SOD or Cat plus Gpx, while single overexpression of SOD either had no effect on the toxicity of the test compounds or increased it. RINm5F cells were also susceptible to butylalloxan, a lipophilic alloxan derivative that is selectively toxic to pancreatic beta-cells. Overexpression of enzymes, both alone and in combination, did not protect against butylalloxan-induced toxicity while SOD overexpression increased it, as evident from a half maximally effective concentration (EC50) value. The addition of Cat to the culture medium completely prevented the toxic effects of H2O2 and H/XO but had no significant effect on the toxicity of menadione or butylalloxan. Extracellular SOD had no effect on the toxicity of any of the test compounds. The results of this study show the importance of a combination of antioxidant enzymes in protecting against the toxicity of reactive oxygen species. Thus, overexpression of Cat and Gpx, alone or in combination with SOD, by use of molecular biology techniques can protect insulin-producing cells against oxidative damage. This may represent a strategy to protect pancreatic beta-cells against destruction during the development of autoimmune diabetes and emphasizes the importance of optimal antioxidative enzyme equipment for protection against free radical-mediated diseases.[Abstract] [Full Text] [Related] [New Search]