These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of carboxyl amino acid modification on the properties of the high-affinity, manganese-binding site in photosystem II. Author: Ghirardi ML, Lutton TW, Seibert M. Journal: Biochemistry; 1998 Sep 29; 37(39):13559-66. PubMed ID: 9753442. Abstract: Our previous work using the "diphenylcarbazide (DPC)-inhibition assay" has identified four amino acid (two carboxyls and two histidyls) ligands to four Mn2+ bound with high affinity on Tris-washed photosystem II (PSII) membrane fragments [Preston and Seibert (1991) Biochemistry 30, 9615-9624, 9625-9633]. One of the ligands binds a photooxidizable Mn, specifically, and the others bind either nonphotooxidizable Mn2+, Zn2+, or Co2+ [Ghirardi et al. (1996) Biochemistry 35, 1820-1828]. The current paper shows the following: (a) the high-affinity photooxidizable Mn, which donates to the oxidized primary PSII donor (YZ*), is bound to a carboxyl residue with a KM = 1.5 microM or Kd = 0.94 microM in the absence of DPC, and a Ki = 1.3 microM in the presence of DPC (both steady-state and flash approaches were used); (b) if this carboxyl is chemically modified using 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride (EDC), Mn2+ is photooxidized at a lower affinity (Kd = 25 microM) site that does not involve carboxyl ligands; (c) low-affinity Mn is photooxidized (possibly by YD*, the oxidized form of the alternative PSII donor) with a KM = 220 microM at a completely different site that also requires a carboxyl ligand; (d) photooxidation of high-affinity DPC by YZ* with a KM of 40-42 microM or Kd of 49-58 microM occurs at a site that does not require carboxyl residues; (e) photooxidation of low-affinity DPC with a KM = 1200 microM occurs at a site (possibly near YD) that is not affected by carboxyl modification with EDC. Due to the similarities between the binding of the high-affinity photooxidizable Mn to EDC-treated membranes and to PSII complexes from Asp170D1 mutants [Nixon and Diner (1992) Biochemistry 31, 942-948], we identify its carboxyl residue ligand as Asp170 on D1, one of the reaction-center proteins. The second carboxyl ligand identified using the DPC-inhibition assay binds Mn (but not a photooxidizable one), Zn, or Co ions. At least one of the two histidyl ligands (either His337 on D1 or another unidentified histidyl) that bind nonphotooxidizable, high-affinity Mn2+ also binds Zn2+ and Co2+.[Abstract] [Full Text] [Related] [New Search]