These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cloning, characterization, and gene organization of K-Cl cotransporter from pig and human kidney and C. elegans. Author: Holtzman EJ, Kumar S, Faaland CA, Warner F, Logue PJ, Erickson SJ, Ricken G, Waldman J, Kumar S, Dunham PB. Journal: Am J Physiol; 1998 Oct; 275(4):F550-64. PubMed ID: 9755127. Abstract: We isolated and characterized the cDNAs for the human, pig, and Caenorhabditis elegans K-Cl cotransporters. The pig and human homologs are 94% identical and contain 1,085 and 1,086 amino acids, respectively. The deduced protein of the C. elegans K-Cl cotransporter clone (CE-KCC1) contains 1,003 amino acids. The mammalian K-Cl cotransporters share approximately 45% similarity with CE-KCC1. Hydropathy analyses of the three clones indicate typical KCC topology patterns with 12 transmembrane segments, large extracellular loops between transmembrane domains 5 and 6 (unique to KCC), and large COOH-terminal domains. Human KCC1 is widely expressed among various tissues. This KCC1 gene spans 23 kb and is organized in 24 exons, whereas the CE-KCC1 gene spans 3.5 kb and contains 10 exons. Transiently and stably transfected human embryonic kidney cells (HEK-293) expressing the human, pig, and C. elegans K-Cl cotransporter fulfilled two (pig) or five (human and C. elegans) criteria for increased expression of the K-Cl cotransporter. The criteria employed were basal K-Cl cotransport; stimulation of cotransport by swelling, N-ethylmaleimide, staurosporine, and reduced cell Mg concentration; and secondary stimulation of Na-K-Cl cotransport.[Abstract] [Full Text] [Related] [New Search]