These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Morphometric studies of collagen and fibrin lattices contracted by human gingival fibroblasts; comparison with dermal fibroblasts. Author: Lorimier S, Hornebeck W, Godeau G, Pellat B, Gillery P, Maquart FX, Laurent-Maquin D. Journal: J Dent Res; 1998 Sep; 77(9):1717-29. PubMed ID: 9759669. Abstract: Cell shape variations and substratum re-organization during contraction of floating collagen and fibrin lattices seeded with human gingival fibroblasts were determined by computerized image analysis of light and scanning electron microscopic images. Data were compared with those obtained with lattices populated with human dermal fibroblasts. The extent of collagen lattice contraction was similar with both cell types, resulting in a two-fold decrease in the area fractions occupied by collagen fibers. Fibroblasts exhibited a rounded shape (form factors equal to 0.8 and 0.7 for gingival and dermal cells, respectively) at day 1 of culture; they possessed a more elongated appearance (with form factors equal to 0.3 and 0.15 for gingival and dermal cells, respectively) at day 7. Continuous (gingival) and discontinuous (dermal) layers of cells were evidenced at the cortex of lattices. Contractions were associated with a significant reduction of the diameters of collagen fibers. Re-organization of substratum, as analyzed by the "Rose of Directions" technique, was evidenced only at the vicinity of filopodia where fibers ran parallel to these protrusions. Several lysed matrix cavities were observed when fibrin lattices were populated with gingival but not dermal fibroblasts at day 5 of culture. Although cells in fibrin lattices exhibited morphometric parameters comparable with those in collagen lattices, no fibroblast layers could be demonstrated at gel peripheries. Fibrin matrices consisted of an isotropic network of entangled fibrin filaments from the start of culture, and only a slight reduction of the diameters of fibrin fibers could be evidenced in dermal fibroblast-populated lattices. Fibrinolysis at the vicinity of gingival fibroblasts led to an entire re-organization of substratum toward the formation of larger fibers. The differential behavior of gingival vs. dermal fibroblasts inside fibrin but not collagen matrices could therefore partly explain the increased rate of remodeling of gingiva as compared with dermis.[Abstract] [Full Text] [Related] [New Search]