These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: B cell responses to a peptide epitope. V. Kinetic regulation of repertoire discrimination and antibody optimization for epitope. Author: Nayak BP, Tuteja R, Manivel V, Roy RP, Vishwakarma RA, Rao KV. Journal: J Immunol; 1998 Oct 01; 161(7):3510-9. PubMed ID: 9759871. Abstract: The influence of imposing various conformational constraints on immune responses to a model epitope within a synthetic peptide immunogen was examined in mice. Although overall immunogenicity was affected, the model epitope (sequence DPAF) remained the predominant recognition site regardless of the conformation in which it was presented. A comparison of anti-DPAF mAbs obtained in response to two analogue peptides, PS1CT3 and CysCT3, in which the DPAF segment was either unconstrained or held within a cyclic loop, respectively, revealed a significant homology in the paratope composition. At one level a subset of anti-PS1CT3 and anti-CysCT3 mAbs was found to share a common heavy chain variable region. In addition, nucleotide sequence homology comparisons of both heavy and light chain variable regions identified the presence of anti-PS1CT3 and anti-CysCT3 mAbs that collectively appeared to derive from a common progenitor, but with nonidentical somatic mutations. Interestingly, however, no bias toward homologous Ag could be discerned on measurement of relative affinities of the mAbs for the two peptides. In contrast, mAb binding on-rates clearly discriminated between peptides representing the homologous vs the heterologous confomer of the DPAF epitope. Thus, it would appear that the kinetics of Ag recognition dominate over equilibrium binding criteria both in epitope-driven repertoire selection and Ab maturation in a humoral response.[Abstract] [Full Text] [Related] [New Search]