These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In vivo and in vitro activities of the gp130-stimulating designer cytokine Hyper-IL-6.
    Author: Peters M, Blinn G, Solem F, Fischer M, Meyer zum Büschenfelde KH, Rose-John S.
    Journal: J Immunol; 1998 Oct 01; 161(7):3575-81. PubMed ID: 9759879.
    Abstract:
    IL-6 is a multifactorial cytokine mediating acute inflammatory responses in the liver. When IL-6 binds to a specific receptor (IL-6R), the IL-6/IL-6R complex associates with the signal transducer gp130, initiating intracellular signaling. A soluble form of the IL-6R (sIL-6R) renders target cells sensitive to IL-6 that do not express the IL-6R on their surfaces. A designer cytokine, termed Hyper-IL-6, consisting of IL-6 covalently linked to the sIL-6R was fully active on gp130-expressing cells at 100- to 1000-fold lower concentrations than unlinked IL-6 and IL-6R. Mice were injected i.p. with Hyper-IL-6 or IL-6. Upon injection of Hyper-IL-6 into mice, the acute phase response, as measured by haptoglobin mRNA expression in the liver, was markedly increased and lasted significantly longer compared with that in mice injected with a 10-fold higher dose of IL-6 alone. On human hepatoma cells, Hyper-IL-6 caused similar effects, indicating that the longer lasting response to the fusion protein could not only be explained by the longer plasma half-life of the fusion protein. Experiments using iodinated IL-6 and Hyper-IL-6 revealed that Hyper-IL-6 bound with high affinity to gp130 and was less efficiently internalized. This effect might explain the longer lasting activity of this protein on cells. The highly active IL-6/sIL-6R designer protein might be of significant clinical importance for the stimulation of cells that are more responsive to the IL-6/sIL-6R complex than to IL-6 alone. Such cells include hemopoietic progenitor cells and hepatocytes.
    [Abstract] [Full Text] [Related] [New Search]