These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The spike trains of inhibited pacemaker neurons seen through the magnifying glass of nonlinear analyses. Author: Segundo JP, Sugihara G, Dixon P, Stiber M, Bersier LF. Journal: Neuroscience; 1998 Dec; 87(4):741-66. PubMed ID: 9759964. Abstract: This communication describes the new information that may be obtained by applying nonlinear analytical techniques to neurobiological time-series. Specifically, we consider the sequence of interspike intervals Ti (the "timing") of trains recorded from synaptically inhibited crayfish pacemaker neurons. As reported earlier, different postsynaptic spike train forms (sets of timings with shared properties) are generated by varying the average rate and/or pattern (implying interval dispersions and sequences) of presynaptic spike trains. When the presynaptic train is Poisson (independent exponentially distributed intervals), the form is "Poisson-driven" (unperturbed and lengthened intervals succeed each other irregularly). When presynaptic trains are pacemaker (intervals practically equal), forms are either "p:q locked" (intervals repeat periodically), "intermittent" (mostly almost locked but disrupted irregularly), "phase walk throughs" (intermittencies with briefer regular portions), or "messy" (difficult to predict or describe succinctly). Messy trains are either "erratic" (some intervals natural and others lengthened irregularly) or "stammerings" (intervals are integral multiples of presynaptic intervals). The individual spike train forms were analysed using attractor reconstruction methods based on the lagged coordinates provided by successive intervals from the time-series Ti. Numerous models were evaluated in terms of their predictive performance by a trial-and-error procedure: the most successful model was taken as best reflecting the true nature of the system's attractor. Each form was characterized in terms of its dimensionality, nonlinearity and predictability. (1) The dimensionality of the underlying dynamical attractor was estimated by the minimum number of variables (coordinates Ti) required to model acceptably the system's dynamics, i.e. by the system's degrees of freedom. Each model tested was based on a different number of Ti; the smallest number whose predictions were judged successful provided the best integer approximation of the attractor's true dimension (not necessarily an integer). Dimensionalities from three to five provided acceptable fits. (2) The degree of nonlinearity was estimated by: (i) comparing the correlations between experimental results and data from linear and nonlinear models, and (ii) tuning model nonlinearity via a distance-weighting function and identifying the either local or global neighborhood size. Lockings were compatible with linear models and stammerings were marginal; nonlinear models were best for Poisson-driven, intermittent and erratic forms. (3) Finally, prediction accuracy was plotted against increasingly long sequences of intervals forecast: the accuracies for Poisson-driven, locked and stammering forms were invariant, revealing irregularities due to uncorrelated noise, but those of intermittent and messy erratic forms decayed rapidly, indicating an underlying deterministic process. The excellent reconstructions possible for messy erratic and for some intermittent forms are especially significant because of their relatively low dimensionality (around 4), high degree of nonlinearity and prediction decay with time. This is characteristic of chaotic systems, and provides evidence that nonlinear couplings between relatively few variables are the major source of the apparent complexity seen in these cases. This demonstration of different dimensions, degrees of nonlinearity and predictabilities provides rigorous support for the categorization of different synaptically driven discharge forms proposed earlier on the basis of more heuristic criteria. This has significant implications. (1) It demonstrates that heterogeneous postsynaptic forms can indeed be induced by manipulating a few presynaptic variables. (2) Each presynaptic timing induces a form with characteristic dimensionality, thus breaking up the preparation into subsystems such that the physical variables in each operate as one[Abstract] [Full Text] [Related] [New Search]