These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Peripheral O2 diffusion does not affect V(O2)on-kinetics in isolated insitu canine muscle. Author: Grassi B, Gladden LB, Stary CM, Wagner PD, Hogan MC. Journal: J Appl Physiol (1985); 1998 Oct; 85(4):1404-12. PubMed ID: 9760334. Abstract: To test the hypothesis that muscle O2 uptake (V(O2)) on-kinetics is limited, at least in part, by peripheral O2 diffusion, we determined the V(O2) on-kinetics in 1) normoxia (Control); 2) hyperoxic gas breathing (Hyperoxia); and 3) hyperoxia and the administration of a drug (RSR-13, Allos Therapeutics), which right-shifts the Hb-O2 dissociation curve (Hyperoxia+RSR-13). The study was conducted in isolated canine gastrocnemius muscles (n = 5) during transitions from rest to 3 min of electrically stimulated isometric tetanic contractions (200-ms trains, 50 Hz; 1 contraction/2 s; 60-70% peak V(O2)). In all conditions, before and during contractions, muscle was pump perfused with constantly elevated blood flow (Q), at a level measured at steady state during contractions in preliminary trials with spontaneous Q x Adenosine was infused intra-arterially to prevent inordinate pressure increases with the elevated Q x Q was measured continuously, arterial and popliteal venous O2 concentrations were determined at rest and at 5- to 7-s intervals during contractions, and V(O2) was calculated as Q x arteriovenous O2 content difference. PO2 at 50% HbO2 saturation (P50) was calculated. Mean capillary PO2 (Pc(O2)) was estimated by numerical integration. P50 was higher in Hyperoxia+RSR-13 [40 +/- 1 (SE) Torr] than in Control and in Hyperoxia (31 +/- 1 Torr). After 15 s of contractions, Pc(O2) was higher in Hyperoxia (97 +/- 9 Torr) vs. Control (53 +/- 3 Torr) and in Hyperoxia+RSR-13 (197 +/- 39 Torr) vs. Hyperoxia. The time to reach 63% of the difference between baseline and steady-state V(O2) during contractions was 24.7 +/- 2.7 s in Control, 26.3 +/- 0.8 s in Hyperoxia, and 24.7 +/- 1.1 s in Hyperoxia+RSR-13 (not significant). Enhancement of peripheral O2 diffusion (obtained by increased PcO2 at constant O2 delivery) during the rest-to-contraction (60-70% of peak V(O2)) transition did not affect muscle V(O2) on- kinetics.[Abstract] [Full Text] [Related] [New Search]