These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Voltammetric studies of the reactions of iron-sulphur clusters ([3Fe-4S] or [M3Fe-4S]) formed in Pyrococcus furiosus ferredoxin.
    Author: Fawcett SE, Davis D, Breton JL, Thomson AJ, Armstrong FA.
    Journal: Biochem J; 1998 Oct 15; 335 ( Pt 2)(Pt 2):357-68. PubMed ID: 9761735.
    Abstract:
    Reactions of the [3Fe-4S] cluster and various metallated [M3Fe-4S] adducts co-ordinated in the ferredoxin from the hyperthermophile Pyrococcus furiosus have been studied by protein-film voltammetry, bulk-solution voltammetry, solution kinetics and magnetic CD (MCD). The [3Fe-4S] cluster exhibits two couples, [3Fe-4S]+/0 and [3Fe-4S]0/2-. Film voltammetry is possible over a wide pH range (2-8), revealing that the [3Fe-4S]+/0 couple shows a complex pH dependence with pKred1=2.8, pKox=4.9 and pKred2=6.7. From MCD, pKred1 corresponds with protonation of [3Fe-4S]0 to give a spectroscopically distinct species, as reported for ferredoxins from Azotobacter and Sulfolobus. The status of the disulphide/disulphydryl entity makes no significant difference to the data (given for the -S-S- form). Formation of the hyper-reduced [3Fe-4S]2- state is observed, requiring 3H+ for the overall 3e- reduction of [3Fe-4S]+, the change therefore being electroneutral. By comparison with the ferredoxin from Desulfovibrio africanus, uptake of Fe(II) and other M(II) by [3Fe-4S]0 to give [M3Fe-4S] clusters is slow (t1/2>10 min at room temperature, slower still if the protein is adsorbed on the electrode), whereas reaction with Tl(I) to produce [Tl3Fe-4S] is very rapid (t1/2<<1 s), suggesting that co-ordination of Tl does not require reorganization of the protein structure. Rates of formation of [3Fe-4S] from [M3Fe-4S] adducts increase sharply at high potentials, showing that metal release involves a labile 'super-oxidized' [M3Fe-4S]3+ state.
    [Abstract] [Full Text] [Related] [New Search]