These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Rapid insulinotropic effect of 17beta-estradiol via a plasma membrane receptor. Author: Nadal A, Rovira JM, Laribi O, Leon-quinto T, Andreu E, Ripoll C, Soria B. Journal: FASEB J; 1998 Oct; 12(13):1341-8. PubMed ID: 9761777. Abstract: Impaired insulin secretion is a hallmark in both type I and type II diabetic individuals. Whereas type I (insulin-dependent diabetes mellitus) implies ss-cell destruction, type II (non-insulin dependent diabetes mellitus), responsible for 75% of diabetic syndromes, involves diminished glucose-dependent secretion of insulin from pancreatic beta-cells. Although a clear demonstration of a direct effect of 17beta-estradiol on the pancreatic ss-cell is lacking, an in vivo insulinotropic effect has been suggested. In this report we describe the effects of 17beta-estradiol in mouse pancreatic ss-cells. 17beta-Estradiol, at physiological concentrations, closes K(ATP) channels, which are also targets for antidiabetic sulfonylureas, in a rapid and reversible manner. Furthermore, in synergy with glucose, 17beta-estradiol depolarizes the plasma membrane, eliciting electrical activity and intracellular calcium signals, which in turn enhance insulin secretion. These effects occur through a receptor located at the plasma membrane, distinct from the classic cytosolic estrogen receptor. Specific competitive binding and localization of 17beta-estradiol receptors at the plasma membrane was demonstrated using confocal reflective microscopy and immunocytochemistry. Gaining deeper knowledge of the effect induced by 17beta-estradiol may be important in order to better understand the hormonal regulation of insulin secretion and for the treatment of NIDDM. receptor.[Abstract] [Full Text] [Related] [New Search]