These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Anoxia differentially modulates multiple K+ currents and depolarizes neonatal rat adrenal chromaffin cells. Author: Thompson RJ, Nurse CA. Journal: J Physiol; 1998 Oct 15; 512 ( Pt 2)(Pt 2):421-34. PubMed ID: 9763632. Abstract: 1. Using perforated-patch, whole cell recording, we investigated the membrane mechanisms underlying O2 chemosensitivity in neonatal rat adrenomedullary chromaffin cells (AMC) bathed in extracellular solution containing tetrodotoxin (TTX; 0.5-1 microM), with or without blockers of calcium entry. 2. Under voltage clamp, low PO2 (0-15 mmHg) caused a graded and reversible suppression in macroscopic outward K+ current. The suppression during anoxia (PO2 = 0 mmHg) was approximately 35% (voltage step from -60 to +30 mV) and was due to a combination of several factors: (i) suppression of a cadmium-sensitive, Ca2+-dependent K+ current, IK(CaO2); (ii) suppression of a Ca2+-insensitive, delayed rectifier type K+ current, IK(VO2); (iii) activation of a glibenclamide- (and Ca2+)-sensitive current, IK(ATP). 3. During normoxia (PO2 = 150 mmHg), application of pinacidil (100 microM), an ATP-sensitive potassium channel (KATP) activator, increased outward current density by 45.0 +/- 7.0 pA pF-1 (step from -60 to + 30 mV), whereas the KATP blocker glibenclamide (50 microM) caused only a small suppression by 6.3 +/- 4.0 pA pF-1. In contrast, during anoxia the presence of glibenclamide resulted in a substantial reduction in outward current density by 24.9 +/- 7.9 pA pF-1, which far exceeded that seen in its absence. Thus, activation of IK(ATP) by anoxia appears to reduce the overall K+ current suppression attributable to the combined effects of IK(CaO2) and IK(VO2). 4. Pharmacological tests revealed that IK(CaO2) was carried predominantly by maxi-K+ or BK potassium channels, sensitive to 50-100 nM iberiotoxin; this current also accounted for the major portion (approximately 60%) of the anoxic suppression of outward current. Tetraethylammonium (TEA; 10-20 mM) blocked all of the anoxia-sensitive K+ currents recorded under voltage clamp, i.e. IK(CaO2), IK(VO2) and IK(ATP). 5. Under current clamp, anoxia depolarized neonatal AMC by 10-15 mV from a resting potential of approximately -55 mV. At least part of this depolarization persisted in the presence of either TEA, Cd2+, 4-aminopyridine or charybdotoxin, suggesting the presence of anoxia-sensitive mechanisms additionalto those revealed under voltage clamp. In Na+/Ca2+-free solutions, the membrane hyperpolarized, though at least a portion of the anoxia-induced depolarization persisted. 6. In the presence of glibenclamide, the anoxia-induced depolarization increased significantly to approximately 25 mV, suggesting that activation of KATP channels may function to attenuate the anoxia-induced depolarization or receptor potential.[Abstract] [Full Text] [Related] [New Search]