These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The toxic mechanism and metabolic effects of atractyloside in precision-cut pig kidney and liver slices.
    Author: Obatomi DK, Thanh NT, Brant S, Bach PH.
    Journal: Arch Toxicol; 1998; 72(8):524-30. PubMed ID: 9765068.
    Abstract:
    The toxic and cellular metabolic effects of atractyloside, a diterpenoid glycoside, which causes fatal renal and hepatic necrosis in vivo in animals and humans, have been investigated in tissue slices prepared from male domestic pig kidney and liver. Precision-cut slices (200 microm thick) were incubated with atractyloside at concentrations of 200 microM, 500 microM, 1.0 mM and 2.0 mM for 3 h at 37 degrees C and changes in lipid profile and pyruvate-stimulated gluconeogenesis investigated. Lipid peroxidative changes, reduced glutathione (GSH) and ATP content, the release of lactate dehydrogenase (LDH), alkaline phosphatase (ALP), alanine and aspartate aminotransferase (ALT/AST) were also assessed. After 3 h of incubation, atractyloside caused a significant (P < 0.01) and concentration-dependent leakage of LDH and ALP from kidney slices. Only LDH leakage was significantly elevated in liver slices while ALT and AST leakage showed marginal increase. Atractyloside at concentrations of > or =200 microM caused a significant increase in lipid peroxidation, but only in liver slices. However, atractyloside at concentrations of > or =200 microM caused a marked depletion of GSH and ATP content in both kidney and liver slices. There was a marked decrease in total and individual phospholipid in kidney but not in liver slices. However, cholesterol and triacylglycerol levels were not affected by atractyloside in both kidney and liver slices. Renal and hepatic pyruvate-stimulated gluconeogenesis were significantly (P < 0.05) inhibited at atractyloside concentrations of > or =500 microM. Accumulation of organic anion p-amino-hippuric acid (PAH) was also inhibited in renal cortical slices at atractyloside concentrations of > or =500 microM. These results suggest that the observable in vivo effect of atractyloside can be reproduced in slices and that basic mechanistic differences exist in the mode of toxicity in liver and kidney tissues. The data also raise the possibility that the mechanistic basis of metabolic alterations in these tissues following treatment with atractyloside may be relevant to target selective toxicity.
    [Abstract] [Full Text] [Related] [New Search]