These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Platelet-derived growth factor-BB and thrombin generate positive and negative signals for human hepatic stellate cell proliferation. Role of a prostaglandin/cyclic AMP pathway and cross-talk with endothelin receptors.
    Author: Mallat A, Gallois C, Tao J, Habib A, Maclouf J, Mavier P, Préaux AM, Lotersztajn S.
    Journal: J Biol Chem; 1998 Oct 16; 273(42):27300-5. PubMed ID: 9765255.
    Abstract:
    Proliferation of myofibroblastic hepatic stellate cells (HSC) in response to growth factors is essential for the development of liver fibrosis. We have reported that prostaglandins (PG) and cyclic AMP (cAMP) inhibit growth of human HSC. This PG/cAMP pathway transduces the endothelin (ET) B-mediated antiproliferative effect of endothelin-1 (ET-1) and up-regulates ETB receptors. Here, we show that platelet-derived growth factor (PDGF)-BB and thrombin, although mitogenic, generate growth inhibitory PGE2 in myofibroblastic human HSC. The two peptides elicit early PGE2 and cAMP synthesis, and also promote delayed induction of cyclooxygenase (COX)-2. Both early and delayed production of PGE2 counteract the mitogenic effect of PDGF-BB and thrombin because: (i) pretreatment with the COX inhibitor ibuprofen markedly enhances the mitogenic effect of both peptides; (ii) blocking early synthesis of PGE2 greatly enhances extracellular signal-regulated kinase (ERK) activation by both growth factors; (iii) enhancement of DNA synthesis by ibuprofen is only lost when the inhibitor is added after COX-2 induction has occurred. Finally, PDGF-BB and thrombin raise ETB receptors through the PG pathway. Thus, ibuprofen blunts growth factor-induced increase in ETB receptors. Up-regulation of the growth inhibitory ETB receptors by both mitogens may enhance the antiproliferative effect of ET-1 and thereby establish a negative feedback of their mitogenic effect. Our results shed light on novel growth inhibitory signals evoked by two mitogenic growth factors expressed during liver injury.
    [Abstract] [Full Text] [Related] [New Search]