These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Augmentation of lung liquid clearance via adenovirus-mediated transfer of a Na,K-ATPase beta1 subunit gene. Author: Factor P, Saldias F, Ridge K, Dumasius V, Zabner J, Jaffe HA, Blanco G, Barnard M, Mercer R, Perrin R, Sznajder JI. Journal: J Clin Invest; 1998 Oct 01; 102(7):1421-30. PubMed ID: 9769335. Abstract: Previous studies have suggested that alveolar Na,K-ATPases play an important role in active Na+ transport and lung edema clearance. We reasoned that overexpression of Na,K-ATPase subunit genes could increase Na,K-ATPase function in lung epithelial cells and edema clearance in rat lungs. To test this hypothesis we produced replication deficient human type 5 adenoviruses containing cDNAs for the rat alpha1 and beta1 Na,K-ATPase subunits (adMRCMValpha1 and adMRCMVbeta1, respectively). As compared to controls, adMRCMVbeta1 increased beta1 subunit expression and Na,K-ATPase function by 2. 5-fold in alveolar type 2 epithelial cells and rat airway epithelial cell monolayers. No change in Na,K-ATPase function was noted after infection with adMRCMValpha1. Rat lungs infected with adMRCMVbeta1, but not adMRCMValpha1, had increased beta1 protein levels and lung liquid clearance 7 d after tracheal instillation. Alveolar epithelial permeability to Na+ and mannitol was mildly increased in animals infected with adMRCMVbeta1 and a similar Escherichia coli lacZ-expressing virus. Our data shows, for the first time, that transfer of the beta1 Na,K-ATPase subunit gene augments Na,K-ATPase function in epithelial cells and liquid clearance in rat lungs. Conceivably, overexpression of Na,K-ATPases could be used as a strategy to augment lung liquid clearance in patients with pulmonary edema.[Abstract] [Full Text] [Related] [New Search]