These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Analysis of novel hydroperoxides and other metabolites of oleic, linoleic, and linolenic acids by liquid chromatography-mass spectrometry with ion trap MSn.
    Author: Oliw EH, Su C, Skogström T, Benthin G.
    Journal: Lipids; 1998 Sep; 33(9):843-52. PubMed ID: 9778131.
    Abstract:
    Linoleate is oxygenated by manganese-lipoxygenase (Mn-LO) to 11S-hydroperoxylinoleic acid and 13R-hydroperoxyoctadeca-9Z,11E-dienoic acid, whereas linoleate diol synthase (LDS) converts linoleate sequentially to 8R-hydroperoxylinoleate, through an 8-dioxygenase by insertion of molecular oxygen, and to 7S,8S-dihydroxylinoleate, through a hydroperoxide isomerase by intramolecular oxygen transfer. We have used liquid chromatography-mass spectrometry (LC-MS) with an ion trap mass spectrometer to study the MSn mass spectra of the main metabolites of oleic, linoleic, alpha-linolenic and gamma-linolenic acids, which are formed by Mn-LO and by LDS. The enzymes were purified from the culture broth (Mn-LO) and mycelium (LDS) of the fungus Gaeumannomyces graminis. MS3 analysis of hydroperoxides and MS2 analysis of dihydroxy- and monohydroxy metabolites yielded many fragments with information on the position of oxygenated carbons. Mn-LO oxygenated C-11 and C-13 of 18:2n-6, 18:3n-3, and 18:3n-6 in a ratio of approximately 1:1-3 at high substrate concentrations. 8-Hydroxy-9(10)epoxystearate was identified as a novel metabolite of LDS and oleic acid by LC-MS and by gas chromatography-MS. We conclude that LC-MS with MSn is a convenient tool for detection and identification of hydroperoxy fatty acids and other metabolites of these enzymes.
    [Abstract] [Full Text] [Related] [New Search]