These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Localization of mitochondrial large ribosomal RNA in germ plasm of Xenopus embryos.
    Author: Kobayashi S, Amikura R, Mukai M.
    Journal: Curr Biol; 1998 Oct 08; 8(20):1117-20. PubMed ID: 9778528.
    Abstract:
    In Xenopus, factors with the ability to establish the germ line are localized in the vegetal pole cytoplasm, or germ plasm, of the early embryo [1-3]. The germ plasm of Xenopus, and of many other animal species including Drosophila, contains electron-dense germinal granules which may be essential for germ-line formation [4-5]. Several components of the germinal granules have so far been identified in Drosophila [6-10]. One of these is mitochondrial large ribosomal RNA (mtlrRNA), which is present in the germinal granules (polar granules) during the cleavage stage until the formation of the germ-line progenitors or pole cells [8-9]. MtlrRNA has been identified as a factor that induces pole cells in embryos that have been sterilized by ultraviolet radiation [11]. The reduction of mtlrRNA in germ plasm by injecting anti-mtlrRNA ribozymes into embryos leads to the inability of these embryos to form pole cells [12]. These observations clearly show that mtlrRNA is essential for pole cell formation in Drosophila. Here, we report that mtlrRNA is enriched in germ plasm of Xenopus embryos from the four-cell stage to the blastula. Furthermore, our electron microscopic studies show that this mtlrRNA is present in the germinal granules during these stages. Thus, mtlrRNA is a common component of germinal granules in Drosophila and Xenopus, suggesting that the mtlrRNA has a role in germ-line development across phylogenetic boundaries.
    [Abstract] [Full Text] [Related] [New Search]