These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sterol synthesis. Synthesis of 3 beta-hydroxy-25,26,26,26,27,27,27-heptafluorocholest-5-en-7-one and its effects on HMG-CoA reductase activity in Chinese hamster ovary cells, on ACAT activity in rat jejunal microsomes, and serum cholesterol levels in rats. Author: Carroll JN, Pinkerton FD, Su X, Gerst N, Wilson WK, Schroepfer GJ. Journal: Chem Phys Lipids; 1998 Aug; 94(2):209-25. PubMed ID: 9779586. Abstract: 3 beta-Hydroxycholest-5-en-7-one (I; 7-ketocholesterol) is an oxysterol of continuing interest in biology and medicine. In the present study, we have prepared a side-chain fluorinated analog, 3 beta-hydroxy-25,26,26,26,27,27,27-heptafluorocholest-5-en-7-one (VI), with the anticipation that the F7 substitution would block major metabolism of the 7-ketosterol, and thereby enhance its potential in vivo effects on serum cholesterol levels and other parameters. Chromium trioxide/dimethyl pyrazole oxidation of the acetate derivative of the previously described 25,26,26,26,27,27,27-heptafluorocholest-5-en-3 beta-ol (Swaminathan et al., 1993. J. Lipid Res. 34, 1805-1823) followed by mild alkaline hydrolysis gave VI. The effects of VI on 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity in Chinese hamster ovary (CHO-K1) cells, on acyl coenzyme A-cholesterol acyltransferase (ACAT) activity in rat jejunal microsomes, and on serum cholesterol levels and other parameters in male Sprague-Dawley rats were determined and compared with those obtained with I and with another alpha, beta-unsaturated ketosterol, i.e. 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one (II). I and VI showed essentially the same potency, considerably less than that of II, in lowering the levels of HMG-CoA reductase activity in CHO-K1 cells. Whereas addition of II to rat jejunal microsomes inhibited ACAT activity (IC50 approximately 3 microM), I and VI had no effect under the conditions studied (from 1 to 16 microM). Dietary administration of I, at levels of 0.1 and 0.15%, had no effect on food consumption, gain in body weight, or serum cholesterol levels. At 0.2%, I caused a modest decrease in body weight gain and a slight decrease in serum cholesterol levels (relative to ad libitum but not pair-fed control animals). The F7-7-ketosterol VI, at 0.26% in diet (the molar equivalent of 0.2% I), had no effect on food consumption, body weight, or serum cholesterol levels. Administration of I (0.1, 0.15 or 0.2% in diet) caused increases in the weight of small intestine. In contrast, no effect of VI (0.26% in diet) on small intestinal weight was observed.[Abstract] [Full Text] [Related] [New Search]