These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Decreased blood oxygen diffusion in hypercholesterolemia.
    Author: Menchaca HJ, Michalek VN, Rohde TD, O'Dea TJ, Buchwald H.
    Journal: Surgery; 1998 Oct; 124(4):692-8. PubMed ID: 9780990.
    Abstract:
    BACKGROUND: Improvement of angina pectoris symptoms after cholesterol lowering has raised questions as to the underlying mechanisms. METHODS: Rabbit experiment: We compared arterial blood samples from New Zealand White cholesterol-supplemented rabbits (n = 6) with nonsupplemented rabbit samples (n = 4) in a closed-loop circulation diffusion system. The pH and partial pressures of oxygen (pO2) and carbon dioxide (pCO2) were measured continuously. The samples were first oxygen (O2) saturated (pO2, 160 mm Hg; pCO2, 4 mm Hg) and then desaturated in 100% nitrogen. Cholesterol levels were determined in whole blood, plasma (P Chol), red blood cells (RBCs), and RBC membranes. Human experiment: We exposed quadruple desaturated venous blood samples (n = 4) with P Chol levels of 87 to 400 mg/dL in a gas exchanger to capillary gas conditions (pO2, 23 mm Hg; pCO2, 46 mm Hg). After 15 minutes we performed blood gas analyses and compared our results to baseline values. RESULTS: In the rabbit experiment the cholesterol-supplemented group as compared to the control group showed higher plasma pO2 levels during the saturation phase and lower plasma pO2 levels during the desaturation phase. It also had a markedly increased RBC membrane cholesterol content: 121 +/- 3 (standard error of the mean [SEM]) mg/dL versus 22 +/- 1.7 mg/dL in the control group (P < .05). This barrier to RBC membrane O2 diffusion caused delayed O2 entry into the RBCs during saturation, with a higher plasma pO2, and delayed O2 release from the RBCs during desaturation, with a lower plasma pO2. In the human experiment the P Chol level was inversely correlated with the percentage change of O2 content in milliliters of O2 per deciliter of blood (P < .05). CONCLUSIONS: Increased RBC membrane cholesterol in hypercholesterolemia appears to decrease the transmembrane O2 diffusion rate.
    [Abstract] [Full Text] [Related] [New Search]