These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification of Asp95 as the site of succinimide formation in recombinant human glial cell line-derived neurotrophic factor.
    Author: Hui JO, Chow DT, Markell D, Robinson JH, Katta V, Nixon L, Chang BS, Rohde MF, Haniu M.
    Journal: Arch Biochem Biophys; 1998 Oct 15; 358(2):377-84. PubMed ID: 9784253.
    Abstract:
    Human glial cell line-derived neurotrophic factor is a single polypeptide of 134 amino acids and functions as a disulfide-linked dimer. Incubation of the protein in pH 5.0 and at 37 degreesC for 1 week showed that 5% of the material was converted to a form that eluted after the major protein peak on a cation-exchange column. The modified component gave an average molecular mass of 30367.0 u (theoretical = 30384.8 u). Within measurement error, this 17.8-u decrease in mass indicated the loss of a water molecule. This observation, together with the protein's behavior on cation-exchange chromatography and the mode of incubation used to generate the modification, was consistent with cyclic imide (succinimide) formation at an aspartyl residue. Hence, only a monomer of the dimeric protein was modified. The modified monomer was purified and subjected to peptic degradation. By a combination of N-terminal analysis and mass spectrometry, the region containing Asp95-Lys96 was identified to be modified. This was further confirmed by carboxypeptidase Y digestion of the modified peptide where the modified region was found to be resistant to further enzymatic degradation. Furthermore, incubation of the modified monomer in pH 8. 5 for 2 h yielded two peaks, in agreement with the succinimide model where the cyclic imide was hydrolyzed into a mixture of isoaspartate and aspartate. Tryptic mapping of the isoaspartyl-containing protein showed that Asp95 was refractory to Edman degradation, confirming it was in the isoaspartate form. Hence, the modification observed was due to succinimide formation at Asp95. This is the first report of succinimide formation at an Asp-Lys linkage.
    [Abstract] [Full Text] [Related] [New Search]