These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Oligomerization and divalent ion binding properties of the S100P protein: a Ca2+/Mg2+-switch model. Author: Gribenko AV, Makhatadze GI. Journal: J Mol Biol; 1998 Oct 30; 283(3):679-94. PubMed ID: 9784376. Abstract: S100P is a 95 amino acid residue protein which belongs to the S100 family of proteins containing two putative EF-hand Ca2+-binding motifs. In order to characterize conformational properties of S100P in the presence and absence of divalent cations (Ca2+, Mg2+ and Zn2+) in solution, we have analyzed hydrodynamic and spectroscopic characteristics of wild-type and several variants (Y18F, Y88F and C85S) of S100P using equilibrium centrifugation, gel-filtration chromatography, circular dichroism and fluorescence spectroscopies. Analysis of the experimental data shows the following. (1) In agreement with the predictions there are two Ca2+-binding sites in the S100P molecule with different affinity; the high affinity binding site has an apparent binding constant of approximately 10(7) M-1 and the low affinity binding site has an apparent binding constant of approximately 10(4) M-1. (2) The high and low affinity Ca2+-binding sites are located in the C and N-terminal parts of the S100P molecule, respectively. (3) These C and N-terminal sites can also bind other divalent ions. The C-terminal site binds Zn2+ (with relatively low affinity approximately 10(3) M-1), but not Mg2+. The N-terminal site binds Mg2+ with the apparent binding constant approximately 10(2) M-1. (4) Binding of Ca2+ to the C-terminal site and binding of Mg2+ to the N-terminal site occur in the physiological concentration range of these ions (micromolar for Ca2+ and millimolar for Mg2+). (5) Oligomerization state of the S100P molecule appears to change upon addition of Ca2+. On the basis of these observations a plausible model for S100P as a Ca2+/Mg2+ switch has been proposed.[Abstract] [Full Text] [Related] [New Search]