These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evidence for a direct conversion between two tubulin polymers--microtubules and helical filaments--in the foraminiferan, Allogromia laticollaris.
    Author: Welnhofer EA, Travis JL.
    Journal: Cell Motil Cytoskeleton; 1998; 41(2):107-16. PubMed ID: 9786086.
    Abstract:
    In Allogromia, tubulin lattices transform between microtubule and helical filament states. Helical filaments are composed of approximately 10-nm-thick tubulin filaments wound into approximately 30-nm diameter coils. The transition pathway between these two lattice states was examined in vitro in detergent-lysed pseudopods. Microtubules represented the majority of the assembled tubulin polymers in the detergent extracted pseudopodia. However, microtubules transformed into helical filaments upon exposure to 10 mM Ca2+ or 50 mM Mg2+. The conversion of microtubules into helical filaments involved fragmentation of the tubulin lattice and reduction in total polymer length. Divalent cations were required for the maintenance of the helical filament state; their removal resulted in the loss of helical filaments and the re-formation of microtubules. The data support a direct transition model in which the tubulin lattice interconverts between the helical filament and microtubule states, independently of tubulin subunit concentration. We propose a structural model for the direct pathway whereby disruption of longitudinal bonds between tandem tubulin dimers in protofilaments causes the microtubule lattice to unwind into helical filaments--continuous ribbons of laterally connected tubulin dimers--from the microtubule end. Helical filaments may rewind into microtubules as longitudinal intersubunit bonds reform.
    [Abstract] [Full Text] [Related] [New Search]