These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Elongation factor-1alpha stabilizes microtubules in a calcium/calmodulin-dependent manner. Author: Moore RC, Durso NA, Cyr RJ. Journal: Cell Motil Cytoskeleton; 1998; 41(2):168-80. PubMed ID: 9786091. Abstract: Elongation factor-1alpha (EF-1alpha), a highly conserved protein named for its role in protein translation, is also a microtubule-associated protein (MAP). We used high-resolution differential interference contrast microscopy to quantify the effect of substoichiometric amounts of EF-1alpha (isolated from Daucus carota) on the dynamic instability of microtubules assembled in vitro from either animal or plant tubulin. EF-1alpha modulates the dynamic behavior of microtubules assembled from either tubulin source, resulting in longer and more persistent microtubules. EF-1alpha, at a 1:20 molar ratio to tubulin, significantly (P < 0.05) reduces the frequency of catastrophe threefold and decreases shortening velocities almost twofold for microtubules assembled from animal tubulin. For microtubules assembled from plant tubulin, substoichiometric amounts of EF-1alpha significantly (P < 0.05) suppress the frequency of catastrophe greater than twofold and causes an almost threefold reduction in shortening velocities. Elongation velocities increase almost twofold and rescues, which are not observed in the absence of EF-1alpha, occur. In addition, calcium/calmodulin (Ca2+/CaM), which regulates the ability of EF-1alpha to bundle taxol-stabilized microtubules in vitro, also modulates the effect of EF-1alpha on the dynamic behavior of microtubules assembled in vitro from animal tubulin. Microtubule severing in the presence of EF-1alpha was never observed. These data support the hypothesis that EF-1alpha modulates the dynamic behavior of microtubules assembled in vitro in a Ca2+/CaM-dependent manner.[Abstract] [Full Text] [Related] [New Search]