These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cleavage and activation of p21-activated protein kinase gamma-PAK by CPP32 (caspase 3). Effects of autophosphorylation on activity. Author: Walter BN, Huang Z, Jakobi R, Tuazon PT, Alnemri ES, Litwack G, Traugh JA. Journal: J Biol Chem; 1998 Oct 30; 273(44):28733-9. PubMed ID: 9786869. Abstract: p21-activated protein kinase gamma-PAK (Pak2, PAK I) is cleaved by CPP32 (caspase 3) during apoptosis and plays a key role in regulation of cell death. In vitro, CPP32 cleaves recombinant gamma-PAK into two peptides; 1-212 contains the majority of the regulatory domain whereas 213-524 contains 34 amino acids of the regulatory domain plus the entire catalytic domain. Following cleavage, both peptides become autophosphorylated with [gamma-32P]ATP. Peptide 1-212 migrates at 27,000 daltons (p27) upon SDS-polyacrylamide gel electrophoresis and at 32,000 daltons following autophosphorylation on serine (p27P); the catalytic subunit migrates at 34,000 daltons (p34) before and after autophosphorylation on threonine. Following caspase cleavage, a significant lag (approximately 5 min) is observed before autophosphorylation and activity are detected. When gamma-PAK is autophosphorylated with ATP(Mg) alone and then cleaved, only p27 contains phosphate, and the enzyme is inactive with exogenous substrate. After autophosphorylation of gamma-PAK in the presence of Cdc42(GTPgammaS) or histone 4, both cleavage products contain phosphate and gamma-PAK is catalytically active. Mutation of the conserved Thr-402 to alanine greatly reduces autophosphorylation and protein kinase activity following cleavage. Thus activation of gamma-PAK via cleavage by CPP32 is a two-step mechanism wherein autophosphorylation of the regulatory domain is a priming step, and activation coincides with autophosphorylation of the catalytic domain.[Abstract] [Full Text] [Related] [New Search]