These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: RNase P RNA structure and cleavage reflect the primary structure of tRNA genes.
    Author: Brännvall M, Mattsson JG, Svärd SG, Kirsebom LA.
    Journal: J Mol Biol; 1998 Nov 06; 283(4):771-83. PubMed ID: 9790839.
    Abstract:
    The function of RNase P RNA depends on its folding in space. A majority of RNase P RNAs from various bacteria show a similar secondary structure to that of Escherichia coli (M1 RNA). However, there are exceptions as exemplified by the RNase P RNA derived from the low GC-content Gram-positive bacteria Bacillus subtilis and Mycoplasma hyopneumoniae (Hyo P RNA). Previous studies using M1 RNA and Hyo P RNA suggest differences both with respect to the kinetics of cleavage as well as to cleavage site recognition. Here we have studied cleavage by these two structurally different RNase P RNAs as a function of changes in the 5' leader and the 3'-terminal CCA motif in the substrate. Our data suggest that the nucleotide at the -2 position in the 5' leader plays a role both for cleavage site recognition and for the rate of cleavage. However, depending on the identity of the -2 residue differences in the cleavage pattern comparing these two types of RNase P RNAs were observed. The results also suggest that the identity of the -1/+73 base-pair in the substrate influences the cleavage site recognition process. These findings will be related to differences in structure comparing these types of RNase P RNAs and the "RCCA-RNase P RNA" interaction. In addition, our findings will be discussed with respect to the primary structure of the tRNA genes in different bacteria.
    [Abstract] [Full Text] [Related] [New Search]