These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lutropins appear to contact two independent sites in the extracellular domain of their receptors.
    Author: Bernard MP, Myers RV, Moyle WR.
    Journal: Biochem J; 1998 Nov 01; 335 ( Pt 3)(Pt 3):611-7. PubMed ID: 9794802.
    Abstract:
    Human chorionic gonadotropin (hCG) and bovine lutropin (bLH), a hormone chemically more similar to most mammalian lutropins than hCG, interact with the extracellular domains of their gonadal lutropin receptors (LHRs). These portions of the rat and human LHRs are 85% identical and both receptors bind hCG with high, albeit not identical, affinity. However, at least 1000-fold more bLH is required to inhibit binding of radiolabelled hCG to the human LHR than to the rat LHR, a phenomenon that proved useful for identifying regions of the extracellular domain that contact lutropins. Previous studies using truncated receptors and lutropin/follitropin receptor chimaeras localized most, if not all, high-affinity ligand contacts to the N-terminal three-fifths of the rat LHR extracellular domain. We report here that 10-fold more bLH was needed to inhibit binding of labelled hCG to rat/human LHR chimaeras containing the N-terminal three-fifths of the human LHR extracellular domain than to the rat LHR. Unexpectedly, 100-fold more bLH was required to inhibit binding of labelled hCG to chimaeras containing the C-terminal one-fifth of the human LHR extracellular domain than to the rat LHR. The ability of the C-terminal portion of the human LHR extracellular domain to inhibit bLH binding suggests this region of the receptor also contacts the ligand even though it is not needed for ligand binding. The extracellular domains of all the glycoprotein hormone receptors are thought to be horseshoe-shaped, a consequence of their leucine-rich repeat motifs. Portions of the ligand that become located within the cavity created by the concave surface of the horseshoe would have the opportunity to contact residues in the C-terminal portion of the extracellular domain. Changes to the ligand or receptor that influence this interaction would be expected to alter binding and confound efforts to identify residues in key ligand-receptor contacts.
    [Abstract] [Full Text] [Related] [New Search]