These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Gestational age-dependent changes in the levels of mRNAs encoding cortisol biosynthetic enzymes and IGF-II in the adrenal gland of fetal sheep during prolonged hypoxemia.
    Author: Braems GA, Han VK, Challis JR.
    Journal: J Endocrinol; 1998 Nov; 159(2):257-64. PubMed ID: 9795366.
    Abstract:
    Hypoxemia represents a major stress for the fetus, and is associated with alterations and adaptations in cardiovascular, metabolic and endocrine responses, which in turn may affect tissue growth and differentiation. To determine the effects of hypoxemia on fetal adrenal activity and growth, we subjected sheep fetuses at days 126-130 and 134-136 (term 145 days) to reduced PaO2 by reducing the maternal fraction of oxygen for 48 h (mean reduction of 6.8 mmHg), without change in arterial pH or PaCO2. This stimulus resulted in similar increases in the plasma immunoreactiveACTH response at both ages. Among adrenal steroids, plasma cortisol (C21Delta4) rose in both groups of animals, but plasma androstenedione (C19Delta4) declined marginally, resulting in a pronounced increase in the cortisol:androstenedione ratio in the plasma that was greater and more sustained in the older fetuses. In the younger fetuses, after 48 h of hypoxemia, there were no significant changes in mRNAs encoding steroidogenic enzymes in the fetal adrenal gland. However, in the older fetuses, hypoxemia resulted in significantly increased levels of mRNAs encoding P450scc, P450C21 and 3beta-hydroxysteroid dehydrogenase, but not for P450C17, in the fetal adrenal gland. Levels of IGF-II mRNA in the fetal adrenal gland fell in both groups of fetuses, and this response was greater at the later gestational age. We conclude that sustained hypoxemia is a potent stimulus which activates adrenal steroidogenesis in the late gestation fetal sheep. The resultant increase in cortisol synthesis is associated with decreased expression of adrenal IGF-II mRNA. We speculate that this relationship might influence patterns of fetal organ growth and differentiative function in response to fetal stress such as hypoxemia.
    [Abstract] [Full Text] [Related] [New Search]