These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vitro assembly of the CENP-B/alpha-satellite DNA/core histone complex: CENP-B causes nucleosome positioning. Author: Yoda K, Ando S, Okuda A, Kikuchi A, Okazaki T. Journal: Genes Cells; 1998 Aug; 3(8):533-48. PubMed ID: 9797455. Abstract: BACKGROUND: We have studied the nucleosome structure formed from alpha-satellite DNA bound with CENP-B and core histones, in order to develop a previous proposal that the CENP-B dimer may play a critical role in the assembly of higher order structures of the human centromere by juxtaposing CENP-B boxes in long alpha-satellite arrays. RESULTS: The dimeric structure of CENP-B was sufficiently stable to bundle together two 3.5 kbp DNA fragments when each DNA contained a CENP-B box. When the same length of DNA included two CENP-B boxes, the intra-molecular interaction with the CENP-B dimer predominated, resulting in the formation of loop structures. The in vitro assembly of CENP-B/alpha-satellite DNA/core histone complexes with the aid of nucleosome assembly protein-1 (NAP-1) permitted an investigation into the nucleosome arrangement in alpha-satellite DNA with CENP-B bound to CENP-B boxes. Footprint analyses with micrococcal nuclease (MNase) revealed that CENP-B causes nucleosome positioning between pairs of CENP-B boxes with unique hypersensitive sites created on both sides. CONCLUSION: We propose that CENP-B functions as a structural factor in the centromere region in order to establish a unique, centromere specific pattern of nucleosome positioning.[Abstract] [Full Text] [Related] [New Search]