These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Peroxynitrite is not a major mediator of endothelial cell injury by activated neutrophils in vitro.
    Author: Su Z, Ishida H, Fukuyama N, Todorov R, Genka C, Nakazawa H.
    Journal: Cardiovasc Res; 1998 Aug; 39(2):485-91. PubMed ID: 9798533.
    Abstract:
    OBJECTIVE: Human polymorphonuclear leukocytes (PMN) produce nitric oxide (NO), superoxide (O2.-) and peroxynitrite (ONOO-) upon stimulation. We investigated the role of ONOO- in PMN-induced injury to cultured bovine aortic endothelial cells (BAEC). METHODS: BAEC were cocultured with phorbol 12-myristate 13-acetate (PMA)-activated human PMN (effector-to-target ratio, 10:1) and injury to BAEC was evaluated at intervals by 51Cr release assay. The levels of NO, O2.-, ONOO- and nitrotyrosine, a reaction product of ONOO-, were also measured, and the influence of NO synthase inhibitors, O2.- and hydroxyl radical scavengers and other effectors was examined. RESULTS: In BAEC cocultured with PMA-activated PMN, 51Cr release was significantly increased [14.6 +/- 2.2% at 2 h (p < 0.05) and 42.6 +/- 2.7% at 4 h (p < 0.01); control (nonactivated PMN), < 4%]. Superoxide dismutase (100 U/ml) reduced 51Cr release to 4.6 +/- 2.2% at 2 h (p < 0.05). N-Iminoethyl-L-ornithine (L-NIO, 0.1 mM) potentiated 51Cr release (30.6 +/- 3.8% at 2 h, p < 0.01), and the potentiation was eliminated by anti-CD18 monoclonal antibody. The 51Cr release was completely prevented by dimethyl sulfoxide or by deferoxamine. Treatment of PMN with L-NIO inhibited NO generation and increased O2.- production. The nitrotyrosine level did not increase in BAEC cocultured with PMA-activated PMN. CONCLUSION: NO-derived ONOO- is not a major cytotoxic mediator in BAEC injury by activated PMN. NO may have a cytoprotective effect by inhibiting PMN adherence to endothelial cells.
    [Abstract] [Full Text] [Related] [New Search]