These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Distribution and metabolism of F6-1,25(OH)2 vitamin D3 and 1,25(OH)2 vitamin D3 in the bones of rats dosed with tritium-labeled compounds. Author: Komuro S, Kanamaru H, Nakatsuka I, Yoshitake A. Journal: Steroids; 1998 Oct; 63(10):505-10. PubMed ID: 9800280. Abstract: 26,26,26,27,27,27-Hexafluo-1,25(OH)2 vitamin D3, the hexafluorinated analog of 1,25(OH)2 vitamin D3, has been reported to be several times more potent than the parent compound regarding some vitamin D actions. The reason for enhanced biologic activity in the kidneys and small intestine appears to be related to F6-1,25(OH)2 vitamin D3 metabolism to ST-232, 26,26,26,27,27,27-hexafluoro-1 alpha, 23S,25-trihydroxyvitamin D3, a bioactive 23S-hydroxylated form that is resistant to further metabolism. Since F6-1,25(OH)2 vitamin D3 is considered to prevent osteoporotic decrease in bone mass by suppressing bone turnover, we here compared the distribution and metabolism of [1 beta-3H]F6-1,25(OH)2 vitamin D3 and [1 beta-3H]1,25(OH)2 vitamin D3 in bones of rats by autoradiography and radio-HPLC. In the dosed groups, radioactivity was detected locally in the metaphysis, the modeling site in bones. As compared with the [1 beta-3H]1,25(OH)2 vitamin D3 case, [1 beta-3H]F6-1,25(OH)2 vitamin D3 was significantly retained in this site, and moreover, it mainly persisted as unchanged compound and ST-232. These findings indicate that the reason for the higher potency of F6-1,25(OH)2 vitamin D3 than 1,25(OH)2 vitamin D3 in bones are linked with increased distribution and reduced metabolism.[Abstract] [Full Text] [Related] [New Search]