These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Proteasomes in distal myopathy with rimmed vacuoles. Author: Kumamoto T, Fujimoto S, Nagao S, Masuda T, Sugihara R, Ueyama H, Tsuda T. Journal: Intern Med; 1998 Sep; 37(9):746-52. PubMed ID: 9804081. Abstract: In a previous report we suggested that muscle fibers in distal myopathy with rimmed vacuoles (DMRV) were degraded by both lysosomal proteolysis (cathepsins) and Ca2+-dependent, nonlysosomal proteolysis (calpain). Given recent evidence of abnormal ubiquitin accumulation in rimmed vacuoles, we examined the role of the ATP-ubiquitin-dependent proteolytic pathway (proteasomes) in myofiber degradation in this myopathy. Immunohistochemically, proteasomes (26S) were located in the cytoplasm in normal human muscle, but the staining intensity was weak. Quantitative analysis showed more reactivity for proteasomes in DMRV muscles and, to a lesser extent, in muscles from muscular dystrophy, polymyositis, and amyotrophic lateral sclerosis patients. In DMRV, proteasomes often were located within or on the rim of rimmed vacuoles, and in the cytoplasm of atrophic fibers. Ubiquitin accumulation was marked within rimmed vacuoles and was seen less extensively in the cytoplasm of atrophic fibers. The latter proteins colocalized well. In other diseased muscles, proteasomes and ubiquitin showed a positive reaction in the atrophic or necrotic fibers. The results indicate increased proteasome and ubiquitin in these muscle fibers as well as in other diseased muscle fibers. We suggest that the ATP-ubiquitin-proteasome proteolytic pathway as well as the nonlysosomal calpain and the lysosomal proteolytic pathway may participate in the muscle fiber degradation in DMRV.[Abstract] [Full Text] [Related] [New Search]